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Abstract. A trajectory following method for solving optimization problems is based on the idea of
solving ordinary differential equations whose equilibrium solutions satisfy the necessary conditions
for a minimum. The method is ‘trajectory following’ in the sense that an initial guess for the solution
is moved along a trajectory generated by the differential equations to a solution point. With the
advent of fast computers and efficient integration solvers, this relatively old idea is now an attractive
alternative to traditional optimization methods. One area in control theory that the trajectory follow-
ing method is particularly useful is in the design of Lyapunov optimizing feedback controls. Such a
controller is one in which the control at each instant in time either minimizes the ‘steepest decent’
or ‘quickest decent’ as determined from the system dynamics and an appropriate (Lyapunov- like)
decent function. The method is particularly appealing in that it allows the Lyapunov control system
design method to be used ‘on-line’. That is, the controller is part of a normal feedback loop with no
off-line calculations required. This approach eliminates the need to solve two-point boundary value
problems associated with classical optimal control approaches. We demonstrate the method with two
examples. The first example is a nonlinear system with no constraints on the control and the second
example is a linear system subject to bounded control.

1. Introduction

In this paper we combine a trajectory following method (Vincent and Grantham,
1997), (Vincent 2000) useful for solving a nonlinear programming problem (NPP)
with a Lyapunov optimizing control (LOC) method (Vincent and Grantham, 1997)
to design feedback controllers for nonlinear dynamical systems. The LOC method
requires that at each state an associated NPP be solved. The NPP problem is subject
to nonlinear inequality constraints on the control variables. This optimization prob-
lem is solved approximately, using differential equations based on the trajectory
following algorithm. In the following sections we review the NPP problem, use
of the trajectory following method to solve it and the LOC method for designing
controllers. We then show how trajectory following can be used with the LOC
method followed by some examples.
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2. Nonlinear Programming Problem (NPP)

In order to design controllers using the LOC method we must deal with an under-
lying nonlinear programming problem of the form:

minimize G(u) (1)

subject to a set of inequality constraints

u ∈ U = {u | h(u) � 0}, (2)

where G(u) is a scaler cost function of an nu-dimensional control vector u, the
set U ⊆ Rnu is a specified constraint set, and h(u) = [h1(u) . . . hnh(u)]	 is
an nh-dimensional vector of inequality constraint functions, with G(u) and each
component of h(u) being continuous and continuously differentiable in u.

The general necessary conditions for a local minimum to this problem are well
known and are given by:

Minimization necessary conditions. If u∗ ∈ U is a regular local minimizing point
for G(u) subject to the constraints (2), then there exists a vector γ = [γ1 . . . γnh]	
such that

0	 = ∂L(u∗, γ )
∂u

(3)

0 � h(u∗) (4)

0 � γ (5)

0 = γ 	h(u∗), (6)

where γ is called a Lagrange multiplier vector and the Lagrangian function L(·)
in (3) is defined as

L(u, γ )
�= G(u)− γ 	h(u). (7)

These necessary conditions incorporate all of the inequality constraint func-
tions, both active (hi = 0) and inactive (hi > 0). Note that (4)–(6) imply that
γi = 0 if hi(u∗) > 0, so that inactive constraints will not play a role.

When using the trajectory following method to solve this problem, it is useful
to identify simple inequality constraints, of the form

umin � u � umax,

where every component of the vector umin is less than every component of the
vector umax. One advantage of introducing simple inequality constraints even for
a problem which can be formulated without any constraints is that we are now
guaranteed that a global minimum (and a global maximum) will exist. The neces-
sary conditions for a minimum, with only simple inequality constraints, reduce to
a straightforward set of equations.
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From (7)

L = G(u)− γ 	max (umax − u)− γ 	min (u− umin)

so that the necessary conditions for u∗ to be a minimum become

0 = ∂G

∂u

∣∣∣∣
u=u∗
+ γ 	max − γ 	min

0 � umax − u∗

0 � u∗ − umin

0 � γmax

0 � γmin

0 = γ 	max

(
umax − u∗

)+ γ 	min

(
u∗ − umin

)
.

It is easy to show that this set of necessary conditions for simple inequality con-
straints is equivalent to the following conditions:

if u∗i = uimax then ∂G
∂ui

∣∣∣
ui=ui∗

� 0

if u∗i = uimin then ∂G
∂ui

∣∣∣
ui=ui∗

� 0

if uimin < u∗i < uimax then ∂G
∂ui

∣∣∣
ui=ui∗

= 0.

(8)

3. Using trajectory following to solve the NPP

Most numerical methods for solving the NPP are based on iteratively solving dis-
crete algebraic equations. The trajectory following method (Arrow and Hurwicz,
1977) is based on solving continuous differential equations, whose equilibrium
solutions satisfy the necessary conditions for a minimum, maximum, or min–max,
depending on the problem to be solved. This method has the advantage that no
special programming skill is required to generate solutions and the differential
equation approach fits in naturally with the LOC method. Trajectory following
is also quite robust, in that many problems, known to be difficult to solve by other
methods, can be easily solved. The same assumptions on G and U are made as with
the NPP.

3.1. MINIMIZING G SUBJECT TO NO CONSTRAINTS

The basic idea behind a ‘trajectory following’ method is to form a set of differential
equations from the gradient of the cost function. Consider first the problem of
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minimizing G(u) subject to no constraints. Suppose that we use the local minimal
point u∗ as an initial condition for integrating the differential equations

u̇ = f(u), (9)

where f(·) is a function at our disposal, to be determined shortly. Suppose also that
we calculate G(u) along the trajectory generated by the solution to (9). Let u∗ be a
local minimal point for G(u). The basic necessary condition for minimizing G(u)
is that

∂G(u∗)
∂u

e � 0

for all vectors e tangent to U at u∗. Since −e = f(u∗) is a tangent vector to the
forward-time trajectory generated by (9) it follows that we need

dG

dt

∣∣∣∣
u∗
= ∂G

∂u

∣∣∣∣
u∗

f(u∗) � 0. (10)

That is, along any feasible trajectory in a neighborhood of the minimal point, the
time derivative of the cost must be non-positive. Since we are interested in a tra-
jectory which will search for a minimum, the above observation suggests that we
integrate (9) by choosing

f(u) = −
[
∂G

∂u

]	
.

To see why this is a good choice, suppose that G(·) has a unique global minimum
at u∗. This means that G(u) > G(u∗) for all u �= u∗ and that, along any trajectory
generated by the unconstrained Trajectory Following equations

u̇ = −
[
∂G

∂u

]	
, (11)

we have

dG

dt
= −∂G

∂u

[
∂G

∂u

]	
< 0

for all points along the trajectory except at u = u∗, where dG/dt = 0. Due
to the assumed uniqueness of u∗ all trajectories from every point in the control
space must asymptotically approach u∗. Thus, in order to solve the problem of
minimizing G(·) in an unconstrained control space, one need only choose an initial
condition for u and integrate (11) until the equilibrium solution is approached.
Unfortunately, since we only have asymptotic stability, the equilibrium point will
never be obtained in finite time. We must instead stop the integration process in
the neighborhood of the equilibrium point when some accuracy criteria has been
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satisfied. We will not get an exact solution, but we can come as close to an exact
solution as desired by specifying that the integration be stopped only when the
difference between two consecutive values of G is less than a pre-specified amount.
Note that in using (11) to search for a minimum it is usually more convenient to
calculate the gradient using a numerical method such as central difference than to
use an analytical gradient.

While the Trajectory Following method has some similarities with the well
known gradient method, it is not the same since the gradient vector under Tra-
jectory Following is continuously updated. Because of this, we avoid convergence
difficulties the numerical gradient method has with some problem. Using Traject-
ory Following with such problems results in a stiff system of differential equations.
The integration routine must be able to handle stiff systems in such situations.

3.1.1. Rosenbrock’s banana function

Perhaps the most famous example of a problem in which traditional gradient meth-
ods have convergence difficulties is Rosenbrock’s banana function (Grace, 1992)
given by

G = 100
(
u2

1 − u2
)2 + (1− u1)

2 .

It is also an example of a problem in which use the trajectory following algorithm
(11) will result in a stiff system of equations. However we have shown (Vincent
and Grantham, 1997; Vincent, 2000) that this problem may be readily solved using
the trajectory following method provided that a stiff integration solver is used such
as the Gear algorithm or any of the stiff integration solvers used by Matlab.

3.2. MINIMIZING G SUBJECT TO SIMPLE INEQUALITY CONSTRAINTS

If the NPP problem has just simple constraints, we may modify (11) to incorpor-
ate the necessary conditions as given by (8). In particular the trajectory following
algorithm becomes

u̇i =




0 if ui = uimax and
∂G

∂ui
� 0

0 if ui = uimin and
∂G

∂ui
� 0

−∂G
∂ui

otherwise,

(12)

where i = 1, . . . , nu. Note that any equilibrium solution generated by the Traject-
ory Following algorithm will satisfy (8) and hence will represent a local minimum
candidate. This algorithm can handle initial conditions u /∈ U , as well as any prob-
lems associated with integrating past a boundary if the integration routine includes
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a test for the inequality conditions being satisfied and setting ui to the appropriate
boundary value for any inequality not satisfied. In this way the first two conditions
of (12) will be automatically satisfied.

It is well worth the extra coding effort to take care of situations where u /∈ U
for any integration time step. The advantage gained is that if a minimal solution
is on the boundary of U then exact values can be obtained for all components of
u which lie on the boundary of U . If G has a unique global minimum on U , then
the trajectory generated by (12) will asymptotically approach the minimal point
starting from almost all u ∈ U . The exceptions would be any interior points of U
for which ∂G/∂u = 0.

If it is known that G has several local minimal points, the above algorithm can
be modified to search for all of them. In modifying the algorithm to search for
multiple minimal points, it turns out that this process is facilitated by searching for
all local minimal points and all maximal points at the same time.

3.2.1. Quadratic cost

A two-dimensional positive-definite or negative-definite quadratic cost function
subject to simple inequality constraints will either have one global minimum point
with one or more local maximal points or one global maximal point with one or
more local minimal points. Consider the problem of minimizing

G = u2
1 − 2u1u2 + 4u2

2

subject to the constraints

−10 � ui � 10.

Suppose that we wish to find all local minimal points using Trajectory Following.
Since this problem could have more than one local minimal point we will attempt
to find all local minimal and maximal points. Rather than automating this process
and just printing out the solutions obtained, the iterative process was done by hand
in order to illustrate the trajectories obtained as shown in Figure 1. The first forward
trajectory (#1) finds a local minimum at the origin. The first backward trajectory
(#2) finds a local maximum at u1 = 10, u2 = −10, and so on, until the second
backward trajectory (#4) finds the local maximum at u1 = −10, u2 = 10.

3.3. MINIMIZING G SUBJECT TO NON-SIMPLE CONSTRAINTS

The Trajectory Following method classifies all inequality constraints as being either
‘simple’ or ‘non-simple’. Since the simple constraints (i.e., upper and lower bounds)
are handled by the algorithm itself, in this section, we will use the notation h(u) �
0 to denote any non-simple constraints which are included in the constraint set.
Non-simple constraints can be included in the Trajectory Following algorithm
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Figure 1. Using trajectory following to find multiple optimal points.

through the use of a penalty function. In particular, we form a new function

W = G+ β

nh∑
i=1

δih
2
i ,

where β is a large positive number, with δi = 1 if hi < 0 and δi = 0 if hi � 0. In
this way whenever a given inequality constraint is satisfied, no penalty is applied.
For every inequality constraint not satisfied, a positive penalty term is added to
G. The minimum value of W should be very close to the minimum value of G
provided that the penalty parameters are taken sufficiently large.

Trajectory following is used to find the minimum of W by replacing G in (12)
with W . It should be noted that even if G by itself would not make (12) a stiff
system, large penalty values certainly will. Most numerical procedures which use
penalty functions for minimizing G recommend using a sequential procedure in
which W is first minimized using small values for the penalty parameters. The
solution obtained is used as a starting condition with larger values of the penalty
parameters until some convergence criteria is obtained. Such a sequential proced-
ure may not be needed to minimize W using Trajectory Following, provided that
a stiff integration routine is used. In fact, very large values for the penalty func-
tions can be used at the onset, and if the solution obtained satisfies pre-specified
convergence criteria, only one run need be made. Note that convergence criteria
should include the amount that the non-simple inequality constraints are allowed
to be negative.

Equality constraints may also be handled in a similar fashion by simply writing
them as two inequality constraints. That is the equality constraint

ψ (u) = 0
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maybe written as the two inequality constraints

ψ (u) � 0

− ψ (u) � 0.

3.3.1. Non-simple constraints

Using Trajectory Following to find all minimal points for (Reklaitis et al. 1983, p.
621)

G = u2
1u

4
2,

subject to the constraints

0.25 − (u1)
3
4 u2 = 0

u1u
4
2 + u2

2

√
u1 − 1 � 0

and the bounds

0 � u1 � 10

0 � u2 � 10.

Using the trajectory following method as illustrated in Figure 2 we obtain the
solution

Gmin = 0.0386

u1 = 0.1010

u2 = 1.3945.

Note how the trajectory following algorithm first drives the solution the neigh-
borhood of equality constant and then to the solution point where the inequality
constraint is active (h = 0) .

3.4. THE LOC METHOD

The combination of function minimization and Lyapunov stability techniques rep-
resents a powerful approach to closed-loop nonlinear control design (Gutman and
Leitmann, 1976; Grantham, 1981c; Grantham, 1982, 1986; Grantham and
Chingcuanco, 1984; Anderson and Grantham, 1989) for systems of the form

ẋ = f (x,u) , (13)

where x ∈ Rnx . The basic idea behind the LOC method is to choose a candidate
Lyapunov-type function W(x), such as distance to a target, and then choose u(x)
so that W [x(t)] decreases along trajectories of (13). There is more freedom in this
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Figure 2. Trajectory following method with non-simple constraints.

process than is normally available in standard Lyapunov stability analysis. This
is because at every state point x, the control system allows for a set of possible
velocity vectors ẋ ∈ f(x,U), rather than a single velocity vector ẋ = f(x) ←
f[x,u(x)], for making W [x(t)] decrease.

A function W(x) is a descent function for a target set X ⊂ Rnx if the following
conditions hold at points that are controllable to the target:

(i) W(x) is continuous and continuously differentiable outside the target set
and on the boundary of the target set.

(ii) The regions W(x) � c are nested. That is, for c1 < c2

{x | W(x) � c1} ⊂ {x | W(x) � c2}.
(iii) The target is contained in one of the W(x) � c regions.

In addition, if the target set X is bounded then we also require
(iv) The regions W(x) � c are bounded.

Condition (iv) is imposed to exclude the possibility that trajectories might decrease
the value of W [x(t)] but with x(t) approaching infinity instead of approaching the
target set X .

Once a specific descent function W(x) has been selected, the feedback control
u(x) is chosen so that W [x(t)] decreases at each state x, hopefully penetrating
W(x) = constant surfaces. If the resulting controller does make W [x(t)] decrease
everywhere outside the target, and the target is the origin, then W(x) will be a
Lyapunov function for the feedback control system which is a sufficient condition
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for asymptotic stability. However we will not require this. There are many applic-
ations where a Lyapunov optimizing control is effective even though W [x(t)] does
not decrease everywhere.

There are two related methods that can be used to make W [x(t)] decrease:
steepest descent and quickest descent (Vincent and Grantham, 1997). We will only
review the quickest descent control method here. This method attempts to make
trajectories penetrate surfaces of constant W(x) as quickly as possible (minimize
dW [x(t)]/dt). This is done by choosing the feedback control u(x) to minimize
dW [x(t)]/dt at each state x. A feedback control law u(x) is a Lyapunov optimizing
quickest descent control for a specified descent function W(x) if

Ẇ [x,u(x)] � Ẇ (x,u) for all u ∈ U , (14)

where

Ẇ (x,u)
�= ∂W(x)

∂x
f(x,u). (15)

The quantity Ẇ (x,u) is the time rate of change of W [x(t)] along a trajectory
x(t). Quickest descent control uses information about both direction and speed. It
has the potential to produce an optimal feedback control law since it has exactly the
same structure as the optimization function associated with Pontryagin’s Minimum
Principal for minimum-time optimal control problems. It is for this reason that the
region of effectiveness under quickest descent control can always be made equal to
the controllable set by using a suitable choice for the descent function. However,
without solving the optimal control problem, it is not obvious how to do this.
Despite this potential, if W(x) is not carefully chosen, quickest descent control
may result in an undesirable trade-off of direction of motion in exchange for an
increase in speed.

4. Using trajectory following with the LOC method

The LOC method requires that a NPP problem be solved at every point of the
trajectory. If an analytical solution is available a closed-loop controller is obtained
directly. See (Vincent and Grantham, 1997) for some examples where this is pos-
sible. However, if an analytical solution can not be found, then some numerical
technique must be used in order to solve the minimization problem at every point
of a trajectory. Depending on the application, this might be difficult to do in a
continuous fashion in order to produce the desired closed-loop control. One way
to avoid continuously solving a numerical optimization problem is to use the Tra-
jectory Following method. Using this method will produce what could be called
Lyapunov sub-optimizing control.

The idea is to solve the numerical optimization problem only once, at the ini-
tial point of the trajectory. For all other points x along a trajectory, the control is
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determined from the differential equations

u̇ = −∂Ẇ
∂u

for quickest descent control. The initial conditions for the differential equations are
determined from the initial numerical optimization problem and the gradients are
calculated numerically so that only Ẇ need be specified. How well these solutions
agree with the actual solutions for the control, as the system moves along the
trajectory, depends on how well these equations track the optimal solutions. Gains
can be introduced into these equations to adjust the rates. Generally, they will do a
good job if the control does not change too rapidly. However, even in cases where
part of the Lyapunov optimizing control is bang-bang, good results can be obtained
as we will show below.

One consideration that is not addressed here is the issue of local versus global
optimization. If the initial control is indeed a global minimum solution, then the
trajectory following method will generally continue to track a global minimum
for the decent function. Likewise the trajectory following method will tend to
follow a non-global minimum initial control. As illustrated below, one does not
necessarily have to specify an initial optimal initial control. In this case the solution
obtained will initially not be a Lyapunov optimizing control, however the trajectory
following method will soon converge to at least a local minimum for the decent
function.

5. Examples

We present two examples both of which have been previously solved analytically
(Vincent and Grantham, 1997). The solutions we obtain below are indistinguish-
able from the analytical solutions.

5.1. QUICKEST DESCENT CONTROL FOR ZERMELO’S PROBLEM

Zermelo’s problem (Vincent and Grantham, 1997) may be thought of as a swimmer
fighting a strong current. The swimmer with a velocity 1 is swimming against a
current of velocity 2. He can swim in any direction as given by the angle u, with
the equations of motion given by

ẋ1 = −2+ cos u

ẋ2 = sin u.

His objective is to reach circular buoy centered at the origin. Using the descent
function

W(x) = x2
1 + x2

2 ,
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Figure 3. Trajectories for Zermello’s problem as generated using trajectory following.

quickest descent control minimizes

Ẇ (x, u) = ∂W

∂x1
f1 + ∂W

∂x2
f2 = 2x1(−2+ cos u)+ 2x2 sin u. (16)

Under trajectory following, the swimmer chooses his direction according to

u̇ = −∂Ẇ
∂u
= 2x1 sin u− 2x2 cos u. (17)

He can improve his chances of reaching the buoy if he chooses his choice for u(0)
at the initial time by minimizing (16) as given by

u(0) = π + tan−1

[
x2 (0)

x1 (0)

]
, (18)

where tan−1(·) is the Fortran ATAN2(·,·) two-argument arctangent function.
Figure 3 shows the quickest descent trajectories that reach the target using

(17) with (18). The region of effectiveness for the quickest descent controller is
a good portion of, but not all of the controllable set for this problem (Vincent and
Grantham, 1997). The reason for this is that quickest descent minimization of this
descent function results in a trade off between the direction of motion and speed.
As a result, trajectories starting in the controllable set but near the controllability
boundary leave the controllable set.
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5.2. QUICKEST DESCENT CONTROL OF THE LINEARIZED INVERTED

PENDULUM

The linearized inverted pendulum is given by the system of equations

ẋ1 = x2

ẋ2 = x1 + u
(19)

where x1 is the angular displacement from the vertical position and x2 is the angular
rate of change. The pendulum is attached to the shaft of a DC motor that can supply
torque within the bounds

−1 � u � 1.

It is easy to show that for this problem the controllable set to the origin is the region
|x1 + x2| < 1. Thus in designing a feedback controller we will not be concerned
with states outside of this region, but the controller should be effective throughout
the controllable set.

Since the system (19) is linear except for the control bounds, we will use a
positive definite quadratic form for the descent function,

W(x) = x	Px, (20)

where P > 0 is symmetric and positive definite. Contours of constant W(x) are
ellipses surrounding the origin. In picking a P matrix for steepest descent control,
we note that for u = 0 the origin is an unstable saddle point equilibrium, with
eigenvalues µ = ±1 and corresponding eigenvectors ξ = [1 µ]	. For the stable
eigenvalue µ = −1, the associated eigenvector ξ = [1 − 1]	 is in a direction
parallel to the controllability boundaries. The system trajectories that approach the
origin also lie on this eigenvector. For this reason, we choose a descent function
that will produce trajectories in this preferred direction of motion. In particular, we
choose a real, symmetric, positive definite P matrix with ξ = [1 −1]	 as one of its
eigenvectors, associated with the smallest eigenvalue of P, in which case ξ lies on
the semi-major axis of the ellipses. Since the eigenvalues of P are real and positive,
the eigenvectors will be orthogonal for distinct eigenvalues and will be aligned with
the axes of the ellipse. The desired P matrix must satisfy the eigenvector equations

[
p11 p12

p12 p22

] [
1 1
−1 1

]
=

[
1 1
−1 1

][
a 0
0 b

]

for eigenvalues 0 < a < b. Thus we see that there is a family of such P matrices,
given by

P = α

[
β + 1 β − 1
β − 1 β + 1

]
α > 0, β > 1. (21)
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For illustrative purposes we choose α = 1/2 and β = 4, yielding the positive
definite quadratic descent function

W(x) = 1

2
[x1 x2]

[
5 3
3 5

] [
x1

x2

]
= 5

2
x2

1 + 3x1x2 + 5

2
x2

2 . (22)

The quickest descent control is obtained by choosing u∗(x) to minimize

Ẇ (x,u) = ∂W

∂x1
f1 + ∂W

∂x2
f2

= (5x1 + 3x2)x2 + (3x1 + 5x2)(x1 + u) (23)

subject to the constraints |u| � 1.
Using the trajectory following method, we would use

u̇ = −∂W
∂u
= −(3x1 + 5x2).

Note that since W is linear in u

σ = 3x1 + 5x2

actually plays the role of a switching function which is nonzero everywhere, except
on the switching surface σ (x) = 0. In other words an optimal controller would
be bang-bang, switching between the limits on u as the trajectory crosses the
switching surface. With this in mind we increase the ‘gain’ on u̇ and use

u̇ = −50(3x1 + 5x2). (24)

Figure 4 illustrates use of the trajectory following algorithm to solve this problem.
For clarity only four trajectories are shown. In generating this figure an initial
optimization problem was not solved. The initial value for u is set equal to zero.
Note that a trajectory either chatters to the origin (shown dark) upon reaching the
switching curve (shown dashed) or it will cross this curve once and then chatter
when reaching the switching curve the second time. All these trajectories start
inside the controllable set and reach the origin in a chattering fashion. The solu-
tions obtained have exactly the same behavior as those obtained with an analytical
solution (Vincent and Grantham, 1997).

We see that quickest descent control also produces a preferred direction of
approach to the target, along the chattering switching surface corresponding to
∂W(x)/∂x2 = 0. However, this quickest descent control has a domain of attraction
that is less than the controllable set. Trajectories starting at some points in the
controllable set leave the set, never to return. This difficulty can be eliminated
by changing the P matrix in the descent function to yield a switching surface
σ (x) = x1 + x2 which is parallel to the controllability boundaries x1 + x2 = ±1.
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Figure 4. Use of trajectory following can result in a (near optimal) chattering solution.

6. Discussion

Implementing a feedback controller based on the Lyapunov optimizing method
requires that a nonlinear optimization problem be solved at every point of the
trajectory. We have demonstrated how one may use trajectory following to readily
solve this continuous sequence of optimization problems. The basic idea behind
the Lyapunov optimizing controller (LOC) is to determine a control that will max-
imize the rate at which the system crosses lines of constant decent function. Using
trajectory following to solve this problem results in a controller that is ‘on line.’
That is the control is determined in a continuous fashion from the solution to a
differential equation. Only the initial condition to this equation need be determined
in order to proceed.

In the first example problem we determine the initial condition by first solving
a nonlinear programming problem. So doing, the trajectory following method will
track the actual solution known for this problem very closely. However as demon-
strated in the second example, one need not even solve for the initial condition for
u in order to successfully apply the method. In the second problem the trajectory
following algorithm was set to track the gradient very quickly. After a very short
period of time the algorithm is yielding the correct control. Perhaps surprisingly,
we also demonstrate with the second example that the trajectory following al-
gorithm is able to produce a chattering solution when such a solution is, indeed,
the proper one under LOC.
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We are interested in applying this method to much more comprehensive ex-
amples and we hope to report on this in the future.
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